Пусть S — конечное множество точек на плоскости, содержащее хотя бы две точки. Известно, что никакие три точки множества S не лежат на одной прямой. Назовём мельницей следующий процесс. Вначале выбирается прямая l, на которой лежит ровно одна точка P из S. Прямая l вращается против часовой стрелки вокруг центраP до тех пор, пока она впервые не пройдёт через другую точку множества S. В этот момент эта точка, обозначим её Q, становится новым центром, и прямая продолжает вращаться против часовой стрелки вокруг точки Q до тех пор, пока она снова не пройдёт через точку множества S. Этот процесс продолжается бесконечно.
Докажите, что можно выбрать некоторую точку P множества S и некоторую прямую l, проходящую через P так, что для мельницы, начинающейся с прямой l, каждая точка множества S выступит в роли центра бесконечное число раз.
Пусть S — конечное множество точек на плоскости, содержащее хотя бы две точки. Известно, что никакие три точки множества S не лежат на одной прямой. Назовём мельницей следующий процесс. Вначале выбирается прямая l, на которой лежит ровно одна точка P из S. Прямая l вращается против часовой стрелки вокруг центраP до тех пор, пока она впервые не пройдёт через другую точку множества S. В этот момент эта точка, обозначим её Q, становится новым центром, и прямая продолжает вращаться против часовой стрелки вокруг точки Q до тех пор, пока она снова не пройдёт через точку множества S. Этот процесс продолжается бесконечно.
Докажите, что можно выбрать некоторую точку P множества S и некоторую прямую l, проходящую через P так, что для мельницы, начинающейся с прямой l, каждая точка множества S выступит в роли центра бесконечное число раз.
BY JustScience | Олимпиадная Математика
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.
What is Telegram?
Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.